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Commensurability effects on the spectra of integrable systems 

V Subrahmanyam and Mustansir Barma 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India 

Received 26 October 1990, i n  final form 16 May 1991 

Abstract. The eigenvalue spectra o f  two simple integrable systems--a three-dimensional 
anisotropic harmonic oscillator (AHO)  and a particle i n  a cuboid-are studied as the aspect 
ratios are changed from rational to irrational values. For rational aspect ratios (commensur- 
able case) there are large number-theoretic degeneracies which grow with energy. These 
degeneracies disappear when the aspect ratios are irrational (incommensurable case). 
However, for a given set o f  rational aspect ratios, commensurable behaviour ensues only 
at large energies. The number of distinct eigenvalues per unit energy interval, which is 
indicative o f  the degree of degeneracies, is seen to approach a constant asymptotically for 
rational aspect ratios. The asymptotic constant is determined for all sets of aspect ratios 
for the AHO and is estimated semi-analytically for several sets o f  aspect ratios far the 
cuboid. The crossover from incommensurable to commensurable behaviour is studied by 
following a sequence of  rational aspect ratios which approaches an irrational limit. A 
scaling form the crossover is suggested and explored numerically. A clear indication of 
scaling is seen for the AHO, while the evidence is suggestive but not definitive for the 
cuboid. Thedistribution ofenergylevel spacings inthecommensurable regime is determined 
for the AHO and a sequence of cuboids. 

1. Introduction 

The eigenvalue spectra of the quantum mechanical counterparts of classically integrable 
systems have been studied extensively. It is quite well established that fluctuations in 
such spectra occur on two distinct energy scales (Berry 1983, 1987, Subrahmanyam 
and Barma 1990): an outer scale which describes the bunching of many different energy 
eigenvalues, and an inner energy scale which is set by the mean spacing between 
successive eigenvalues. On the outer scale, the structure in the density of states is well 
understood in terms of closed periodic classical orbits (Gutzwiller 1971, Balian and 
Bloch 1972, Berry and Tabor 1977). By contrast, spectral structure on the inner energy 
scale is not so handily described in such terms; the spectrum on this scale is very 
sensitive to small changes of parameters which cause large fluctuations in eigenvalue 
degeneracies. 

Here we are concerned with the occurrence of large degeneracies of individual 
energy eigenvalues in two simple integrable systems-a three-dimensional anisotropic 
harmonic oscillator (AHO) and a particle in a cuboid. We follow the changes in the 
energy level spectrum as the aspect ratios (ratios of frequencies for the harmonic 
oscillator, ratios of sides for the cuboid) are varied from rational to irrational values. 
When the aspect ratios are rational (commensurable case) and the energy is large 
enough, there are large number-theoretic degeneracies which are not associated with 
any obvious symmetry. Such 'arithmetical' degeneracies have been studied in a number 
of systems (Itzykson and Luck 1986, Barma and Subrahmanyam 1991). These 
degeneracies disappear when the aspect ratios are irrational (incommensurable case). 
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For systems with equal volumes, the total number of states in a given energy range 
is roughly the same whether or not there are degeneracies, but the number of energy 
levels (distinct eigenvalues) is sensitive to degeneracies. Accordingly, we examine the 
total number of levels NI.,,,( e)  up to e, where e is a dimensionless, scaled energy. In 
the incommensurable case, the absence of large degeneracies implies that N,,,,,(e) is 
of the same order as the total number of states, and thus shows the following behaviour: 

N,,,, ,(e) - e’ incommensurable AHO 
incommensurable cuboid, 

In the commensurable case, NlevJe) turns out to vary linearly with e if e is large 
enough, for both AHO and cuboid, i.e. the function 

asymptotes to a constant h ( a ) ,  where a=  (ax, a,,, a,) determines the aspect ratios 

f ( e ) z  h ( a )  commensurable AHO and cuboid. (3) 
This saturation property of f  ( e )  implies that for large e, mean degeneracies, given by 
the ratio of the number of levels to the number of states in an energy interval, are of 
order e2 for the AHO and of order eli2 for the cuboid. 

In general, characteristic incommensurable or commensurable behaviour (equations 
(1) and (3)) does not necessarily set in over the entire range of e. For instance, if the 
aspect ratios are rational, but in some sense close to irrational, there is a crossover 
as function of e. Characteristic rational behaviour (3 )  sets in only for e much larger 
than a crossover energy e * ( a ) ,  while for e < e * ( a )  the behaviour is similar to that 
in the incommensurable case (1). In this paper, we study examples of such incom- 
mensurable-commensurable crossover in the AHO and the cuboid by examining a 
sequence of commensurable sets a, which approach an incommensurable set a as 
m + a. For each set of aspect ratios a,, we study the function f (e)  and its asymptotic 
value h ( a , ) .  We are able to find h ( a , )  for all m for the AHO. For the cuboid, we 
derive upper bounds on h ( a , )  for the first few members of the sequence a, and 
present numerical evidence that in fact the bounds are saturated. 

We also address the question of whether a scaling description of the crossover is 
valid for asymptotically large e and m, i.e. whether we can write 

in the limit m +CO, e +  a, withy = e / h i  + held fixed. Here h,  = h(u, ) ,  Y is the scaling 
Function and A is the crossover exponent which depends on the system (AHO or cuboid). 
Note that (1)-(4) imply that Y(y)+ 1 as y + m  and Y(y)-yIiA as y+O. We study the 
crossover function Y numerically, for both the AHO and the cuboid. We find that while 
there is good evidence for asymptotic scaling for the AHO (section 2.1), the evidence 
is suggestive but not definitive for the cuboid (section 2.2). 

2. Incommensurable-eommensurable crossover and scaling 

2.1. 7he three-dimensional anisotropic harmonic oscillator 

The eigenvalues of a three-dimensional anisotropic harmonic oscillator (AHO) with 
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frequencies of vibration in the ratios ax:  a>, : a: are given by 

E. = hw,( a,n, + aYny + a,n,) n.T,?,z=o,l,2... (5 )  

where n = (nx ,  n.", n,) labels the eigenstates, and the zero-point energy :Rw,(a,+a,.+ 
a*) has been subtracted off. In terms of the dimensionless, scaled energy defined as  
e = ( E /  hwo)(a,a,a,)-l~', the number of states with scaled energy less than or equal to 
e remains roughly the same as the aspect ratios are changed, and varies as e'. 

In the commensurable case, it proves convenient to take a's to be integers with n o  
common divisor. Degeneracies come about from the various ways of representing an 
integer as a linear form L, = a,n, + a,ng + a,n,.  Now, the asymptotic probability that 
an integer is of the linear form La is unity if two of the components of a do not have 
a common divisor (see appendix A). This implies that the total number of levels 
Nleve1(e) grows as e for large e, and ( 3 )  holds with 

h(a)=(arayaz)"' .  (6) 

With irrationally related aspect ratios it is clear that no two sets (n.r, n., n , )  can 
correspond to the same energy, i.e. no degeneracies, implying that the total number 
of levels is equal to the total number of states (see (1)). 

To study the irrational-rational crossover along the lines discussed in section 1, 
we consider a sequence a, which leads to aspect ratios 1 : 7: r2 in the limit m + m. 
Here ~=(6+ 1)/2 is the golden mean. We choose ax,  a., a, to be 62, PmPmtlr pk+, 
respectively where P m  is the mth member of the Fibonacci sequence ( P I  = P2 = 1, P m  = 

Figure I ( a )  shows numerically generatedf(e) plotted against e2  for a few sets a, 
for the AHO. Each C U N e  shows a crossover from irrational behaviour at low energies 
e < e*(a , )  to rational behaviour at large energies e >  e * ( a , ) .  However, the crossover 
energy e*(") shifts to larger values as the generation index m gets larger. Scaling 
would be valid if the asymptotic constant h(a)  essentially determines the behaviour 
of the whole function f ( e )  as given in (4). In order to test the scaling form (4), in 
figure l ( b )  we have plotted f,(e)/h, against the scaling variable yz=e'/hm (corre- 
sponding to A = +  in (4)) for several generations m. The curves for different m seem 
to approach a limit, suggesting that in  fact a scaling form describes the incommensur- 
able-commensurable crossover in the AHO. 

P m - , + P m - 2 ) .  

2.2. Particle in a cuboid 

Consider a free particle in a finite cuboid with periodic boundary conditions, with 
sides in the ratio a,. : m,, : a=. The energy eigenvalues are given by 

nx,).,i = 0, il, *2 . . . . (7) E" =- h 2  - 1 (a,n:+ a,n;,+a,n,) 2 

2m L2 
where n labels the eigenstates. With our definitions, the lengths of the edges of the 
cuboid are 2 7 r L / G  etc. We define a dimensionless, scaled energy as e -  
(2m~2/h2)eL2(a ,n ,n , ) -" '  so that the total number of states remains roughly the same 
as we change the aspect ratios. When the aspect ratios are irrationally related, the only 
degeneracies are those coming from in,,,,,, in  which case the total number of energy 
levels is of the same order as the total number of states, which in turn grows as e"'. 

In the commensurable case, we choose a's to be integers. There is a possibility of 
large degeneracies, coming from different ways of representing an integer as the 
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0 1 2 3 L 

e’ 40‘ 

0 10 20 30 40 50 

Y‘ 

Figurel. (a)Thefunctionf;,,(e)is plattedagainst e’forthegenerations m = 3  to8(moving 
upwards) for the AHO. Each of the EUTYCS displays incommensurable behaviour at small 
e and asymptotes, at large e, to a constant h(n , , , )  marked by arrows. ( b )  Y - f ( e ) / h , , ,  is 
plotted against the scaling variable y 2 =  e’lh.,, for the AHO for generations m = 3  to 8 
(moving downwards). The curvcs seem to approach a limiting curve as the generation 
index m increases, suggesting the existence of scaling for the incommensurable-commensur- 
able crossover. 

quadratic form Qm = a d +  a,n:+a,n:. Let p ( n )  denote the asymptotic probability 
that an integer is expressible in at least one way as the quadratic form Q.. Then the 
asymptotic value o f f (  e) is given by 

Finding p ( u )  for a general set n is an unsolved number theoretical problem, but we 
have estimated it for some cases as explained further below. 

In order to study incommensurable-commensurable effects, we consider the 
sequence mm with the three components chosen as om, pn1+,, where p m  is the 
mth member of the Fibonacci sequence. As m + a, the aspect ratios will approach the 
ratio I :  7: r2 as in section 2.1. 

For the simplest case a = ( I ,  1.1) (corresponding to m = 0 of our sequence), Gauss 
proved (Landau 1927, Sierpinski 1964) that an integer k cannot be represented as 
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nt+n:,+n: if and only if k belongs to the set do 

Sa0={4'(8t+7); /, t = O ,  1 ...}. (9) 
That is, all integers which cannot be written as sums of three squares fall into patterns, 
each characterized by a period 4'8 and a phase 4'7. Since the patterns do  not intersect, 
every member of Sao falls under one pattern only. The fraction of integers contained 
inSa,(i.e. thedensi tyoftheset)  i s i ( l + a + $  ...)=: whichimplies t h a t p ( l , l , l ) = s .  
In a few simple cases other than (I = (1, 1, I ) ,  Lebesgue, Dirichlet and Ramanujan 
provided the answers, following Gauss by finding patterns similar to (9) (Ramanujan 
1927). But results for the cases we need were not known. 

For each (I from the sequence under study, we found patterns in the set .d, of 
integers not representable as Q,, and thus estimated the asymptotic probability p ( ( ~ ) .  
However, it turns out that there are two important differences from the case (I = ( 1 , 1 , 1 )  
discussed above. First, not all members of Sa, belong to periodic patterns, though 
almost all do. Second, the patterns are not necessarily non-intersecting. Let 9" denote 
a subset of d", comprising those members of Sam which are fully characterized by 
patterns. The sets 93- can be found analytically and the corresponding densities 1 - p ( a )  
estimated. Results for several (I, are displayed in table 1. Furthermore, by numerical 
enumeration of dm we found that the density of Sam approaches that of %,, listed in 
table 1 for each (I (see figure 2 ( a ) ) .  This means that the leftovers of Sa, (those members 
of Sa,, not characterized by patterns) constitute a vanishing fraction of integers, and 
do  not contribute to p ( a ) .  

Table 1. The sets s-,,, of integers not of the quadratic form Q-,, 

The set B., of integers 
Generation not of the form 
index m a, ,a , ,% *\?I:+ e , n :  + a,n: 

0 I ,  1, I 
1 I ,  1.2  
2 I. 2 , 3  
3 2 .3 .5  
4 3.5.8 
5 5 . 8 ,  13 
6 8, 13.21 
7 13.21.34 
8 21, 34, 55 
9 34.55.89 

10 55.89, 144 
1 1  89,144,233 

12 144,233,377 

13 233,377,610 

4'(81+7j 
4'(16r + 10) 
4'(161+ 10) 
9'(9r+6) 
9'(91+6); ( 4 l + 2 )  
(4r+3);  ( 8 1 + 6 ) ;  4'(64r+56) 
(41 + 3 ) ;  ( 8 1 + 6 ) ;  4'(64f + 56) 
9'(9r+6); 4'(16f + 14); 49'(491+7, 14.28) 
9'(91 +6) ;  4'(161+ 10); 49'(491+7, 14,281 
(1211+22,66,77,88, 110) 
(4r+2);  (121r+22,66,77,88,1 10) 
(4r+3);  (8r+6);  ( 9 f + 3 , 6 )  
(16r+l2);4'(128r+112j 
(41+3):(81+6);  (Yr+3.6); 
(161-t 12):4'(128r+lI2)  
4'(161+14) 

1/6 
1/12 
1/12 
1/8 
11/32 
19/48 
19/48 
127/512 
127/512 
5/121 
136/484 
493 / 864 

493/864 

1/12 

0.0844 
0.1 170 
0.1687 
0.2754 
0.3219 
0.4922 
0.7942 
1.601 
2.589 
5.343 
6.483 
6.265 

10.14 

35.01 

We now turn to finding periodic patterns of the form P f + a ,  and identifying 93,, 
for a given quadratic form Qm. The method of identifying a pattern for a given period 
P is outlined in appendix B. In principle, one has to try out all integers as candidates 
for periods. However, we observed that only prime numbers or their powers seem to 
figure as independent periods. Table 1 shows the patterns identified for several a,,,, 
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0 m iao 270 360 
e"' 

I 
0 w 80 1M 160 MO ),"' 

Figure 2. ( a )  The function f..,(e) is plotted against e'" for the cuboid for m = 3 to 8 
(moving upwards). The asymptotic values h ( a , , , )  of / ( e )  (given in table 1) are marked by 
arrows. ( b )  Y =  / ( c ) / h , , >  isplottedagainst thescal ingvariabley"'E~/h, , ,  forthecuboid. 
The dotted curves are for m = 4  to 8 (moving downwards) while the solid curves for m = 9 
to 13 are marked in the figure. Though there are fluctuations as the generation index m is 
changed, the solid curves are crowded in a relatively narrow region. 

along with the corresponding densities. In each case, we have examined all integers 
up to 512 as  candidate periods. We also tried all powers of primes up to 10000 for 
primes below 100 in all cases. We believe our results for the densities of $8- are accurate 
at least up to four significant figures. In principle, it is possible that we have not found 
the full set 93- since we have not tried out all primes. However, our estimate of p ( a )  
is a definite upper bound as it can be checked that any additional pattern not identified 
by us would increase the density of Bm and thus decrease p(u). We tested our estimate 
of the density of B,, against the density of numerically generated .de. Due to computer 
limitations, we could examine integers up to lon only for generating numerical data 
for &. For most cases given in table 1 (up to m = lo), we found good agreement, 
suggesting strongly that the bounds are saturated. 

Using out estimate of p ( n , )  in (8) we find A(a,), which is the asymptotic value 
of f ( e )  (see (3)). Figure 2 ( a )  shows the numerically generated f ( e )  plotted against 
e"2 for a few sets a,,,. The corresponding values of /?(a,,) are indicated as well. The 
fact that each of the curves tends to asymptote (as e + m )  to the value given in table 
1 implies that the leftovers (uncharacterized members of .de) do not contribute to 
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h ( a ) ,  andf(e)  exhibits commensurable behaviour asymptotically. Each curve displays 
the essential feature we concerned with, namely the incommensurable-commensurable 
crossover. Note that the incommensurable behaviour at low e is due to the leftovers 
of da discussed above. 

Turning to the scaling description of the incommensurable-commensurable cross- 
over, we examine figure 2 ( b ) ,  which shows the scaling function U, = f ( e ) / h ,  plotted 
against y l '*-&/h,  (corresponding to A =  2 in (4)) for a few generations m. Though 

in m, in contrast to the situation for the AHO. To test whether the function Y ( y )  in  
fact asymptotes to a limiting function as m +m, in figure 3(b) we have plotted Y ( y * )  
as a function of the generation index m for a few fixed values of the scaling variable 
y = y * .  Fluctuations in Y ( y )  with changing m reflect the fluctuations of the number- 
theoretic probability p(a,) which is plotted as a function of m in flgure 3(a). A 

ably smaller than those in p(a,); it is quite possible for Y ( y * )  to approach a limit as 
e + m, m + m, even though p(u,) may not tend to a limit as m + m (the answer to this 

- n c +  c . . - J ~ c  ,---..,.-I i- - m + n h o o  1-0- fin..-. 1 1  h l l  Ihn a--rrrarh 1- 0 l i m i t  i r  nnt mrrnntnni~ 
. . L " " , * " . , I ~ ~ L U n u . 1 . y o r n . r ~  , " C b L , ~ " , C  L,.,,,, L.L".yy.VVI.. L V Y  ...... L.., L.V.L..Y..VI"...I 

CQmpErisQn 0ffig.r.s ?(a>  2nd ? ( b )  r.vea!s !ha! !he flfiC!fia!ions in Y(y*)  are consider- 

025 

IO1 

O 3 6 9 12 
m 

- 0.75 t . Q i l b l :  I : : :  :, . :: 1 
3 0 0 . .  

a .  0 . 5 0  
LE 

0 

o ~ o ~ ~ D  0.25 

0 4 8 12 16 
m ... ..... 1 ,>\.,.LA -...--.-. ;"-...L"L:,:.,, "1.. , ,";,,a";"*"k,m I> :r",",,rA lnli"CI ,..CA. 

"fJY"J. , U ,  1115 ""y"'pL"L1L p'Y"o""1L.) p I Y , , , I  \8...c., ,., ."".. ., .1 *.Y....A..e"....il I,. ,", 
the cuboid. There are number-theoretic fluctuations as the generation index m is changed. 
( b )  Y,,,(y*) is plotted against m for three panicular values of the scaling variable y* = 20, 
40, 140, for the cuboid. The amplitude of the fluctuations here is suppressed comparrd to 
fluctuations in  ~ ( a , , , ) ,  in  ( a ) ,  due to scaling, and Y,,,(y*) seems to asymptote to a finite 
limit as m + m. 
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question is still open). On the basis of the evidence presented (see figures 2(b) and 
3(b)), we feel it is plausible that scaling obtains in a limiting sense. 

V Subrahmanyam and M Barma 

3. Energy level statistics in the commensurable regime 

We now turn to the question of distribution of energy levels (distinct eigenvalues). We 
are interested in the probability that two neighbouring levels have a spacine s. Since 
the average spacing between the energy levels varies differently with e in the incom- 
mensurable and commensurable regimes, and we would like a non-trivial asymptotic 
distribution for spacings, the choice of a proper 'energy' variable E is different in the 
two cases. E should be chosen such that the number of levels up to E grows linearly 
with E. Thus, E = e in the commensurable regime for both the AHO and cuboid, whereas 
in the incommensurable regime E = e' for the AHO and E = el l2  for the cuboid. In 
terms of the energy variable E the average spacing between the levels is of order unity. 

Let P ( s )  ds  denote the probability that two successive energy levels have a spacing 
between s and s+ds .  In the incommensurable regime, P ( s )  does not approach an 
asymptotic distribution for the AHO (Pandey and Ramaswamy 1991), while P ( s )  is 
believed to approach a Poisson distribution for the cuboid (Shudo 1989). In the 
commensurable regime, as shown below, P ( s )  can be calculated trivially for the AHO. 

For the cuboid, we can use the patterns Be,,, (given in table I ) ,  to determine P, ( s ) .  
The answer depends on  a,, but for each m it is found that f,(s) consists of a finite 
number of delta functions, and is cut off beyond a finite value s = s*. 

3.1. The AHO 

From ( 5 ) ,  the energy level locations, in terms of E = ~ / h w ~ ,  are specified by integers 
which can be represented as a linear form. For each generation m of the sequence we 
have considered in section 2, the fraction of integers that can be written as a linear 
form is unity as explained in appendix A. Thus the asymptotic spacing distribution 
for the energy levels is 

~ ( 1 )  = 1 %  p(.$j = n  for s > 1 ( IO)  

for all m. 

3.2. 7'he cuboid 

The energy level locations are specified by integers which can be expressed as a 
quadratic form (see ( i j j .  Lei p ( s j  be the density of isolated sirings of  3 successive 
zeros i.e. integers which do  not correspond to energy levels. The probability P ( s )  is 
related to p ( s )  (after normalization) by 

P(ij  is determined from the normaiizaiion condiiion 1;" P i s )  = I. 
We now turn to finding p ( s ) .  First consider the simple case of cube, i.e. m = O  in 

table 1. We know that an integer is not a energy level if and only if it belongs to the 
set do given in (9). It is easy to see that three consecutive integers cannot belong to 
the above set do, which implies that p ( s )  = O  for s > 2 .  The argument proceeds by 
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supposing the converse, i.e. k, k t  1 ,  k + 2 E  { 4 ' ( 8 t + 7 ) } .  Then there are two possibilities 
which we argue out separately. 

(i) k is even. Since 8 t+7  is always odd, both k and k + 2  should be of the form 
4 ' (8 t+7)  with I #  0. Then both k and k + 2  would have to be divisible by 4 which is 
impossible. 

(ii) k is odd. In this case both k and k + 2  have to be of the form 8 t + 7 ,  which is 
again not possible. 

Thus p ( s )  = 0 for s > 2.  Also, we have the condition 

p(1)+2p(2)=k (12) 

since the left-hand side should add up to the density of the set do. Now p ( 2 )  can be 
calculated by examining the number of pairs of integers k, k +  1 belonging to the set 
Sa,. We need to find the solutions of 

(13) 

The asymptotic fraction of integers satisfying the above equation is 114'8, for I >  1, 
which, on summing over l, leads to a probability 1/96 that a pair of integers belongs 
to do. This implies that p ( 2 )  = 1/96. From (12), it then follows that p(l)=7/48. 

lead to the same distribution, we 
can use our estimate of the sets a=,,, (given in table 1 )  to find p, (s) .  The calculation 
follows the method used for m = 0, though it is considerably involved in some cases; 
details are given elsewhere (Subrahmanyam 1991). The results are given in table 2. In 
each case the distribution is cut off, as in the case m = 0. 

4'(81, + 7 )  = 81, + 7 f 1 .  

For cases other than m = 0, since dmm and 

Table 2. The densities p ( s )  of isolated strings of I integers belonging to am,, 

0 
1.2 
3 
4 
5,6 
7 
8 
9 
IO 

13 
11,12 

7/48 1/96 
1/12 
1 / 8  
7/32 1/16 
6/48 5/48 1/48 
1025/6144 1247136864 4571110592 31/110592 1/110592 
137918192 1721155296 11151221184 61/110592 1136864 
5/121 
291121 51242 
521864 126/864 281864 81864 0 11/864 1/864 
1/12 

4. Conclusions 

We have studied commensurability effects on the eigenvalue spectra of a three. 
dimensional anisotropic oscillator and a panicle in a cuboid. For large enough energies 
there are large number-theoretic eigenvalue degeneracies when the aspect ratios are 
rational, which disappear when the aspect ratios are irrational. The number of eigen- 
values per unit energy interval f (e) has been explored numerically for a sequence of 
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rational aspect ratios which tends to an irrational limit. For a given rational set of 
aspect ratios, at low e, f ( e )  exhibits incommensurable behaviour: f ( e ) -  e* for the 
AHO and f ( e )  - e”2 for the cuboid. The commensurable behaviour, f ( e ) -  h ( a )  for 
both the AHO and the cuboid, shows up at large e. The asymptotic value h ( a )  is 
determined for the AHO and for the first 14 members of the sequence of cuboids studied. 
An asymptotic scaling form for the incommensurable-commensurable crossover- 
according to which the asymptotic value h ( a )  should determine the whole function 
f( e)-is suggested and numerically explored. A clear indication is seen in favour of 
scaling for the AHO, whereas for the cuboid the evidence is suggestive. 

In the commensurable regime, the nearest-neighbour energy level spacing distribu- 
tion is shown to consist of a finite sequence of delta functions. 

V Subrahmanyam and M Barma 
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Appendix A 

In this appendix we find the asymptotic probability that an integer is of the linear 
form L, = a,n, + a,n, + u,n,. 

Let P(a,n, + ayny + a,n,) denote the asymptotic fraction of integers of the form L, 
for a particular integer set a. Exploiting the simplicity of the linear form we see that 
(for a, < a,) 

P(a,n, + ayny + a&) = P( urn, + E,& + E z f l z )  (AI) 

where E, = ay and E z  = a, -a,. Similarly proceeding further we can get a new linear 
form with 

(A2) 

One can see from the above equation that, given any arbitrary a,. and, a:, one can 
find an integer doublet (m,, m2) such that E, = 1. This implies 

(A3) 

Note that if the components of a have a common divisor b, then the asymptotic 

E,  = a,m, + aym2.  

P( a,n, + ayfly + a,n,) = P( u p ,  + E,n, + a)  = 1. 

probability is l /b .  

Appendix B 

Here we show how to find a pattern P t + a  amongst the integers not representable as 
u,n:+a,n~+a,n: .  An integer k can be written as P f + R , ( k ) ,  where f is any integer 
and R , ( k )  can take values 0, 1,. . . , P- 1. That is R , ( k )  is just the remainder of k 
when divided by €? This defines a congruence modulo P, k - R , ( k )  (mod P ) .  Note 
that a fraction 1/P of integers are congruent to a(mod P), a E (0 , l  . . . P - 1). 
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Let us examine the possible remainders R , ( k )  (modulo P )  that can be generated 
by the integers of the form k = a,n: + a,n:+ a,& for a given a: 

Now each one of the three terms in the parentheses on the right-hand side is a number 
from (0, 1, . . . , P- l ) ,  but it is not necessary that it takes on every value in the interval 
(in fact the number of distinct values for each one of the squares in (B l )  is upper 
bounded by ( P + i ) j 2 ) .  w e  can check what vaiues R,(kj  can take (moduio P )  by 
adding the three integers in the parentheses (of (Bl)). If it is found that a particular 
value ai E (0,1,. . . , P- 1) cannot be generated by the above procedure, it immediately 
implies that any integer k =  P i + a j  cannot be represented as u,n:+a,.n~,+a,n:.  

In order to check the allowed values of R,(a,n:), it suffices to vary n, between 0 
and P - 1. Thus a finite calculation gives information about all the integers of the form 

the above procedure. For a short period P, the whole scheme can be carried out by 
hand while for longer periods P >  100 the scheme can be implemented on a computer. 

pi+ a (which consiiiuie i j p  fraction of the integers), Tnis i s  rssefitiai point of 
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